BCNode 系列 LoRa DTU 使用说明

编号: BCNode-L002

版本: BCNode 系列 LoRa DTU 使用说明_V1.0

日期: 2019-08-16

版本历史记录

版本	时间	描述
1.0	2019/8/16	初始版本
2.0	2020/4/14	修改版本

目录

1.	产品概述		4
	1.1. 产品	选型	4
	1.2. 技术	参数	5
2.	硬件介绍		6
	2.1. 接口	定义	6
	2.2. 指示	灯定义	7
	2.3. 按钮	定义	7
3.	组网模式介	绍	8
	3.1. 默认	透传模式	8
	3.2. 手动	组网模式	8
	3.3. 自动	组网模式	10
	3.4. 三种	组网方式优缺点比较	11
4.	使用说明		12
	4.1. 环境	搭建	12
	4.1.1.	硬件准备	12
	4.1.2.	软件准备	13
	4.1.3.	通信连接	13
	4.2. 透传	模式测试	14
	4.3. 手动	组网模式测试	14
	4.3.1.	按键组网	14
	4.3.2.	AT 命令组网	16
	4.3.3.	命令模式下其他功能	19
	4.4. 自动	组网测试	
	4.4.1.	主机工作流程	24
	4.4.2.	通过 PC 工具查看节点列表	24
5.	AT 指令集		25
6.	订购信息		26
		型 号	
7.			

1.产品概述

BCNode 系列 LoRa DTU 包含主机、从机、中继三种设备类型,支持星型自组网。该产品支持导轨式安装,采用 RS485,RS232 接口与设备通信,实现了串口到网络的双向数据透明传输,同时支持一路电源输出,可直接给外接设备供电。该产品已应用于智能电网、工业控制、传感器网络等领域。该产品适用于 RS485 设备总线通信或者传感器数据采集。具有比较优秀的障碍物穿透力和抗干扰能力,省去布线的困扰。空旷传输距离可达 3000m。

1.1.产品选型

LoRa 主机

LoRa 从机

LoRa 中继

本产品分为三款。主要区别是工作模式的差异。 具体描述如下:

型号	描述	备注
BCNode-Lora	Lora 从机节点,和主机进行组网,并且进行数据的传输通信	
BCNodeS-Lora	Lora 主机节点,和从机进行组网通信	
BCNode-Lora	Lora 中继节点,可以中继主机和从机之间的通信	中继实际上是从机配
		置出来的

1.2. 技术参数

分类	参数	取值		
	无线类型	LoRa		
	工作频段	470Mhz-510Mhz(96 信道)		
	发射功率	21dBm max		
上 无线参数	接收灵敏度	灵敏度高达 -140dBm		
75.77	速率等级	9 个速率等级(0.3-19.2kbps),		
	LoRa 包长	56Byte max@0.3kpbs, 240Byte max@>0.3kpbs		
	传输距离	空旷传输距离可达 2000m		
	天线选项	外置天线		
	数据接口	RS485/RS232,支持 2400-115200 波特率。 默认出厂参数为 9600 波特率,8 数据位,1 停止位, 无校验 LoRa		
	工作电压	DC 5V~24V		
硬件参数	工作电流	接收电流 11mA 发射电流<110mA @21dBm 休眠电流 3uA		
		一路电源指示灯		
	指示灯	一路联网状态与网络数据收发指示灯		
		一路本地数据通信收发指示灯		
	工作温度	-40°C ~ +85°C		
	存储温度	-45°C ~ +90°C		

2. 硬件介绍

2.1.接口定义

功能	名称(见上图丝印)	描述
外部接口	V	电源
	G	地
	R	RS232-RX
	Т	RS232-TX
	A1、B1	R485 串口
	A2、B2	预留
	DC5~24V 火牛接口	直流 5~24V 输入
	SAM 天线接口	外置天线
指示灯	Pwr	设备供电电源指示
	Net	联网状态与网络数据收发指示灯
	Act	本地数据通信收发指示灯
按钮	Reload	恢复出厂,重启

2.2. 指示灯定义

指示灯类别	现象类 别	指示状态	现象描述	备注
Pwr 灯	常亮	电源	常亮	常亮
	常亮	网络	网络建立成功	常亮
Net 灯	慢闪	配对	主机进入配对状态慢闪,退 出配对状态常亮;	慢闪为 500ms ON 500ms OFF
(主机)	闪烁 3 次	网络通信	收到数据后闪烁 3 次	
	慢闪	配对	从机进入配对状态慢闪,配对成功常亮,配对失败 2 分钟超时后熄灭	慢闪为 500ms ON 500ms OFF
NI_4 /kT	常亮	信号强度 (SNR>0)	收到主机的透传数据 (SNR>0)	常亮
Net 灯 (从机)	闪烁	信号强度 (-10 <snr<=0)< td=""><td>收到主机的透传数据 (-10<snr<=0)< td=""><td>1s ON 200ms OFF</td></snr<=0)<></td></snr<=0)<>	收到主机的透传数据 (-10 <snr<=0)< td=""><td>1s ON 200ms OFF</td></snr<=0)<>	1s ON 200ms OFF
	闪烁	信号强度 (SNR<=-10)	收到主机的透传数据 (SNR<=-10)	200ms ON 1s OFF
	熄灭	信号强度	网络断开	超过 10 分钟没收到 数据熄灭
Act 灯	闪烁	串口通信		

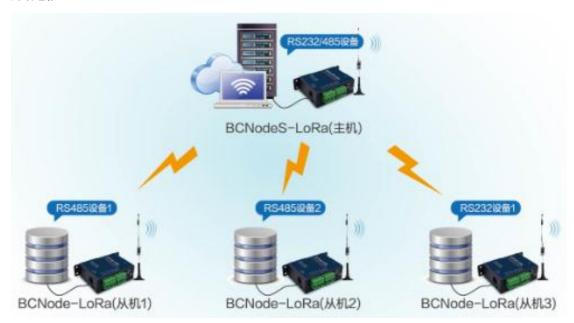
2.3. 按钮定义

主机按钮定义

- 主机短按 Reload 键进入配对状态,再次短按 Reload 键退出配对状态或者 10 分钟空闲自动退出配对状态。
- 主机长按 Reload 键 3s, 3 个指示灯同时闪烁 1 次恢复出厂。

从机按钮定义

- 从机短按 Reload 键进入待配对状态,再次短按 Reload 键或者超过 2 分钟未配对恢复之前的配置。
- 从机长按 Reload 键 3s, 3 个指示灯同时闪烁 1 次恢复出厂。


3.组网模式介绍

本产品使用 LoRa 无线传输, 主机节点和从机节点可以工作在三种组网方式下:

- 1. 默认透传模式
- 2. 手动组网模式
- 3. 自动组网模式

3.1. 默认透传模式

这种工作方式主机和从机使用默认参数(信道、速率)通信,无需配置,主机和从机可以直接使用 串口进行透传通信



3.2. 手动组网模式

手动组网模式包括按钮组网和 AT 命令组网 2 种方式:

- 1. 按钮组网如下:
 - (1) 主机短按下 Reload 键, Net 灯慢闪。
 - (2) 从机短按下 Reload 键, Net 灯慢闪, 配对成功 Net 灯常亮, 配对失败 2 分钟超时后 Net 灯熄灭。
 - (3) 主机短按下 Reload 键, Net 灯常亮, 退出配对状态。

(4) 配对结束,主机和从机可通过串口透传通信

2. AT 命令组网如下:

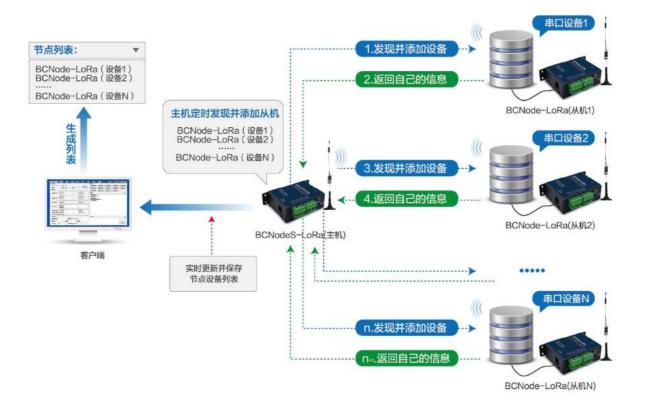
主机和从机可以通过串口接收 AT 指令进入、退出配网状态。

主(从)机节点默认工作在透传模式,下面是主(从)机节点进入 AT 指令模式的方法:

- (1) 串口设备给主(从)机连续发送"+++", 主(从)机收到"+++"后,会给设备发送一个'U'。在发送"+++"之前的 200ms 内不可发送任何数据。
- (2) 当设备接收'U'后,必须在 3 秒内给主(从)机发送一个'U'。
- (3) 主(从)机在接收到'数据'后,给设备发送"OK",并进入"指令模式"。
- (4) 设备接收到"OK"后,主(从)机已进入"指令模式",可以向其发送 AT 指令。

主机可以通过串口接收 AT 指令进入或退出配网状态、发现待配对从机节点、刷新从机节点列表、实时更新从机节点参数、删除从机节点等操作。

主机可以通过扫描发现,配对等命令操作将从机节点添加到网络,并能实时动态修改各个从机节点的通信参数,提高网络容量,保证及时性和稳定性。适用于大规模组网应用,并能通过云服务器等方式控制 LoRa 设备信道的分布,防止 LoRa 设备频段冲突。


从机可以通过串口接收 AT 指令进入或退出配网状态、获取通信参数等操作。

具体命令内容请参考: BCL03 组网模块串行通信协议.pdf

3.3. 自动组网模式

主机可配置为自动组网模式,无需外部 MCU 控制,主机间隔性处于自动发现和自动添加的状态,主机和 节点可随时进行透传通信,该功能使用简单,适用于快速组网、无需太多网络参数配置的场景。

3.4. 三种组网方式优缺点比较

	优点		不足
默认透传模式	无需配置	,使用简单,上电直接透传通信	主机和从机使用默认参数通信,多个主
			机同时存在的时候容易互相干扰
		外部 MCU 无需干预,自动生	无
	按钮	成随机无线通信参数,避免干	
		扰,组网简单	
手动组网模式	AT 命令	自动生成随机无线通信参数,	外部 MCU 需要代码干预
		避免干扰,组网简单	
自动组网模式	无需外部 MCU 干预,自动生成随机无线		多主机存在时,从机节点可能误添加
	通信参数	,避免干扰,组网简单。	

4. 使用说明

下面按照按钮组网方式进行介绍, lora 组网应用

4.1. 环境搭建

4.1.1.硬件准备

4.1.2.软件准备

下载 PC 工具, 打开 PC 工具如下:

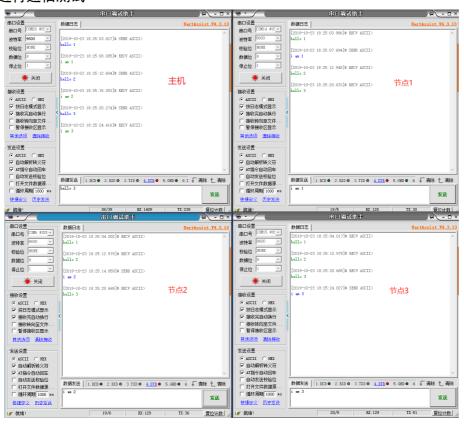
4.1.3.通信连接

电脑通过 485 接口或者 232 接口, 连接主机或者从机设备。

RS485 接口如下,可用 USB 转 485 线与 PC 或者具有 RS485 接口的设备进行连接,接口定义为通用 RS485 电气接口。接口定义如下: A1(本设备 RS485-A)、B1(本设备 RS485-B)、A2(预留)、B2(预留)。

RS485 接口

RS232接口如下,可用USB转232线与PC或者具有232接口的设备进行连接,接口定义为通用RS232电气接口。接口定义如下: V(电源输出)、G(地)、R(本设备232接收)、T(本设备232发送)。

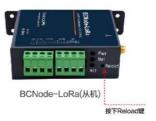


RS232 接口

4.2. 透传模式测试

产品出厂就是默认透传模式,主机和从机之间直接可以进行通信。

- 1. 主机从机同时上电
- 2. 主机和从机连接电脑端串口助手,波特率 9600、8 数据位、1 停止位、无校验
- 3. 主机从机进行通信测试


4.3. 手动组网模式测试

4.3.1.按键组网

- 1. 主机从机同时上电
- 2. 主机按按钮进入配对模式, Net 指示灯慢闪(500ms ON, 500ms OFF)

3. 从机按钮进入配对模式。Net 指示灯慢闪(500ms ON, 500ms OFF), 配对成功后 Net 指示灯常亮

- 4. 主机再次按按钮退出配对模式, Net 指示灯常亮
- 5. 连接串口助手,进行通信测试

6. 新入网设备只需要再和主机进入配对模式即可再次组网

4.3.2.AT 命令组网

我们提供客户上位机评估工具,可以进行组网,修改信道,速率等等的功能。

1. 主机连接电脑,打开窗口显示主机的固件,以及网络等信息。

2. 主机进入发现设备

- 3. 从机按按钮进入配对模式
- 4. 主机界面发现新设备


5. 主机停止发现设备

6. 主机添加设备,起名字

点击设备,如果网关处于出厂模式下,要先修改密钥、信道、速率

点击添加设备

添加设备成功,修改设备名并点确定按钮

7. At 命令下通信测试

4.3.3.命令模式下其他功能

命令模式下还提供其他高级功能。

- 1. 设备信号测试
 - a) 刷新单个设备

b) 刷新全部设备

2. 设备节点通信测试

3. 修改节点信道、速率

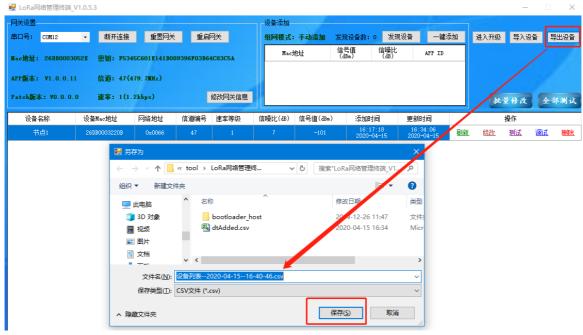
a) 修改单个节点

如果主机使用命令模式,可以使网络内的节点处于不同的信道和速率参数,这样可以提高网络的容量和通信效率,就可以使用单独更新方式,主机收发数据时可指定节点的参数进行通信

b) 修改多个节点

如果主机使用透传模式通信,就需要保证主机和节点的信道和速率一致,这时可通过批量更新节点参数实现,修改主机信道和速率只用于透传模式

4. 设备删除



5. 一键添加设备,可添加处于配对状态的任意节点

6. 设备列表导入,导出(换新网关时,新网关的密钥、信道、速率必须和旧网关一致,然后导入旧 网关保存的节点列表,新网关和设备节点不需要再次配对即可进行通信)

7. 修改网关信息

8. 重置网关

9. 设备升级

4.4. 自动组网测试

主机可配置为自动组网模式,无需外部 MCU 控制,主机间隔性处于自动发现和自动添加的状态,主机和 节点可随时进行透传通信,该功能使用简单,适用于快速组网、无需太多网络参数配置的场景。 该模式使用比较频率较低,慎重使用。

4.4.1.主机工作流程

- 上电为组网模式,自动扫描添加待配对的从机,超过 5 分钟没有收到从机响应进入透传模式
- 组网过程中, 串口收到数据立刻停止自动组网, 切换到透传模式
- 透传模式超过 5 分钟无数据传输进入组网模式
- 可通过 PC 工具(LoRa 网络管理终端)查看节点信息

4.4.2.通过 PC 工具查看节点列表

5.AT 指令集

协议基本格式如下,具体命令请参考: BCL03 组网模块串行通信协议.pdf

接收格式: 头码 + 操作类型码 + 数据长度 + 数据 + 校验码

Head	Opcode	ParamLength	ParamData	CrcCheck
头码(1 字	操作类型码	数据长度(2字节)为0时无	数据(Length 字	校验(2 字
节)	(2 字节)	ParamData 项	节)	节)

响应格式: 头码 + 操作类型码 + 响应状态 + 数据长度 + 数据 + 校验码

Head	Opcode	Status	ParamLength	ParamData	CrcCheck
头码 (1 字 节)	操作类型码(2)字节)	状态返 回码 (1 字节)	数据长度(2 字节)为 0 时无 ParamData 项	数据(Length 字 节)	校验(2 字 节)

头 码: 请求固定值为 0x87;

校验算法: CRC-16 x16+x15+x2+1

在线工具: https://www.lammertbies.nl/comm/info/crc-calculation.html

6. 订购信息

6.1. 订购型号

表 6-1: 订购型号

产品	描述	天线	MOQ(PCS)	备注
BCNode-LoRa	LoRa 从机节点	外置吸盘天线		可自行配置为中继 节点
BCNodeS-LoRa	LoRa 主机节点	外置吸盘天线		

7. 联系我们

翼数(上海)信息科技有限公司

网址: www.beancomm.com

手机: 17326012517

邮箱: info@beancomm.com

QQ: 2875211099